Natural Basis Functions and Topographic Memory for Face Recognition
نویسندگان
چکیده
Recent work regarding the statistics of natural images has revealed that the dominant eigenvectors of arbitrary natural images closely approximate various oriented derivative-of-Gaussian functions; these functions have also been shown to provide the best fit to the receptive field profiles of cells in the primate striate cortex. We propose a scheme for expression-invariant face recognition that employs a fixed set of these "natural" basis functions to generate multiscale iconic representations of human faces. Using a fixed set of basis functions obviates the need for recomputing eigenvectors (a step that was necessary in some previous approaches employing principal component analysis (PCA) for recognition) while at the same time retaining the redundancy-reducing properties of PCA. A face is represented by a set of iconic representations automatically extracted from an input image. The description thus obtained is stored in a topographically-organized sparse distributed memory that is based on a model of human long-term memory first proposed by Kanerva. We describe experimental results for an implementation of the method on a pipeline image processor that is capable of achieving near real-time recognition by exploiting the processor's frame-rate convolution capability for indexing purposes. 1 Introduction The problem of object recognition has been a central subject in the field of computer vision. An especially interesting albeit difficult subproblem is that of recognizing human faces. In addition to the difficulties posed by changing viewing conditions, computational methods for face recognition have had to confront the fact that faces are complex non-rigid stimuli that defy easy geometric characterizations and form a dense cluster in the multidimensional space of input images. One of the most important issues in face recognition has therefore been the representation of faces. Early schemes for face recognition utilized geometrical representations; prominent features such as eyes, nose, mouth, and chin were detected and geometrical models of faces given by feature vectors whose dimensions, for instance, denoted the relative positions of the facial features were used for the purposes of recognition [Bledsoe, 1966; Kanade, 1973]. Recently, researchers have reported successful results using photometric representations i.e. representations that are computed directly from the intensity values of the input image. Some prominent examples include face representations based on biologically-motivated Gabor filter "jets" [Buhmann et al., 1990], randomly placed zeroth-order Gaussian kernels [Edelman et a/. This paper explores the use of an iconic representation of human faces that exploits the dimensionality-reducing properties of PCA. However, unlike previous approaches employing …
منابع مشابه
A comprehensive experimental comparison of the aggregation techniques for face recognition
In face recognition, one of the most important problems to tackle is a large amount of data and the redundancy of information contained in facial images. There are numerous approaches attempting to reduce this redundancy. One of them is information aggregation based on the results of classifiers built on selected facial areas being the most salient regions from the point of view of classificati...
متن کاملFace Recognition using Eigenfaces , PCA and Supprot Vector Machines
This paper is based on a combination of the principal component analysis (PCA), eigenface and support vector machines. Using N-fold method and with respect to the value of N, any person’s face images are divided into two sections. As a result, vectors of training features and test features are obtain ed. Classification precision and accuracy was examined with three different types of kernel and...
متن کاملInvestigating the Influence of Biological Sex on the Behavioral and Neural Basis of Face Recognition
There is interest in understanding the influence of biological factors, like sex, on the organization of brain function. We investigated the influence of biological sex on the behavioral and neural basis of face recognition in healthy, young adults. In behavior, there were no sex differences on the male Cambridge Face Memory Test (CFMT)+ or the female CFMT+ (that we created) and no own-gender b...
متن کاملA New Fast and Efficient HMM-Based Face Recognition System Using a 7-State HMM Along With SVD Coefficients
In this paper, a new Hidden Markov Model (HMM)-based face recognition system is proposed. As a novel point despite of five-state HMM used in pervious researches, we used 7-state HMM to cover more details. Indeed we add two new face regions, eyebrows and chin, to the model. As another novel point, we used a small number of quantized Singular Values Decomposition (SVD) coefficients as feature...
متن کاملA COMPARATIVE ANALYSIS OF WAVELET-BASED FEMG SIGNAL DENOISING WITH THRESHOLD FUNCTIONS AND FACIAL EXPRESSION CLASSIFICATION USING SVM AND LSSVM
This work presents a technique for the analysis of Facial Electromyogram signal activities to classify five different facial expressions for Computer-Muscle Interfacing applications. Facial Electromyogram (FEMG) is a technique for recording the asynchronous activation of neuronal inside the face muscles with non-invasive electrodes. FEMG pattern recognition is a difficult task for the researche...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1995